
Rate-induced collapse in evolutionary systems

Constantin W. Arnscheidt1∗ and Daniel H. Rothman1

1Lorenz Center, Department of Earth, Atmospheric, and Planetary Sciences,
Massachusetts Institute of Technology, Cambridge, MA, USA

∗To whom correspondence should be addressed; E-mail: cwa@mit.edu

Abstract1

Recent work has highlighted the possibility of “rate-induced tipping”, in which a system undergoes an2

abrupt transition when a perturbation exceeds a critical rate of change. Here we argue that this is widely3

applicable to evolutionary systems: collapse, or extinction, may occur when external changes occur too4

fast for evolutionary adaptation to keep up. To bridge existing theoretical frameworks, we develop a5

minimal evolutionary-ecological model showing that rate-induced extinction and the established notion of6

“evolutionary rescue” are fundamentally two sides of the same coin: the failure of one implies the other,7

and vice versa. We compare the minimal model’s behavior with that of a more complex model in which8

the large-scale dynamics emerge from the interactions of many individual agents; in both cases there is9

a well-defined threshold rate to induce extinction, and a consistent scaling law for that rate as a function10

of timescale. Due to the fundamental nature of the underlying mechanism, we suggest that a vast range11

of evolutionary systems should in principle be susceptible to rate-induced collapse. This would include12

ecosystems on all scales as well as human societies; further research is warranted.13

1 Introduction14

A wide range of systems — ecological, environmental, and societal — can undergo abrupt transitions when15

small changes exceed a “tipping point” threshold [Scheffer et al., 2001, Folke et al., 2004, Lenton, 2013,16

Scheffer, 2020]. The classical view is to consider such tipping point thresholds as fixed (e.g. May [1977],17

Ashwin et al. [2012]), but recent work has considered “rate-induced tipping”, in which the transition is18
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initiated when a forcing exceeds a critical rate of change [Wieczorek et al., 2010]. Rate-induced tipping19

has been identified both in models of ecological systems [Scheffer et al., 2008, Vanselow et al., 2019] and20

of climate [Ashwin et al., 2012, Arnscheidt and Rothman, 2020, Lohmann and Ditlevsen, 2021].21

In evolutionary systems, adaptation through natural selection can promote the survival of populations22

in the face of environmental change. This has long been recognized in the context of individual species23

[Maynard Smith, 1989]. When evolution allows a species to adapt to conditions that otherwise would have24

driven it extinct, this is referred to as evolutionary rescue; it has been studied widely in the contexts of25

conservation biology and medicine [Gonzalez et al., 2013, Carlson et al., 2014, Bell, 2017]. Evolutionary26

rescue has been demonstrated in laboratory experiments with microbes [Bell and Gonzalez, 2009], and27

also occurs in nature: antibiotic resistance is one example [Bell, 2017].28

On a vastly larger scale, similar ideas have been discussed in the context of mass extinctions. During29

each of the “Big Five” mass extinctions of the Phanerozoic (542 Ma-present), more than 75% of species30

were lost, with the end-Permian extinction eliminating as many as 94% [Barnosky et al., 2011]; these are31

paradigmatic examples of abrupt global state transitions [Barnosky et al., 2012]. Each was accompanied32

by dramatic environmental change, and it was suggested early on that they were triggered when such33

change occurred too quickly for evolutionary adaptation (now interpreted on a global scale) to keep up34

[Newell, 1963]. Recent work has indeed demonstrated a connection between mass extinctions and the35

exceedance of a critical rate of global carbon cycle change, supporting this hypothesis [Rothman, 2017].36

Understanding the detailed conditions under which mass extinctions (or more generally, global biosphere37

state shifts) occur is especially timely in light of the accelerating modern-day global species losses due to38

human actions [Ceballos et al., 2015].39

In this paper, we synthesize thoughts from across these disparate domains in the following way. We40

first present a minimal model of a single evolving population, which demonstrates the fundamental re-41

lationship between rate-induced tipping towards extinction and the established concept of evolutionary42

rescue. We identify a well-defined threshold for rate-induced extinction to occur, and obtain a scaling law43

for the critical rate to induce extinction as a function of timescale; the latter is consistent with prior work in44

the study of mass extinctions. Next, we test the robustness of these observations in a more complex model45

in which the interactions of individual reproducing agents are modeled explicitly — finding near-identical46

behavior. Motivated by these results, we suggest that rate-induced collapse may be a fundamental feature47
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of a vast range of evolutionary systems, including ecosystems on all scales as well as human societies.48

2 Minimal model of evolutionary rescue and rate-induced extinc-49

tion50

Our first course of action is to outline the fundamental connection between evolutionary rescue and rate-51

induced tipping towards extinction.52

A number of previous studies have considered how evolution can counteract deleterious environmental53

change [Pease et al., 1989, Lynch and Lande, 1993, Gomulkiewicz and Holt, 1995, Lande and Shannon,54

1996, Orr and Unckless, 2008], yet the body of work on rate-induced tipping points has so far developed55

independently. An exception is the recent work by Vanselow et al. [2021], which shows that rate-induced56

collapse of a prey population occurring purely due to the ecological dynamics (i.e. even with no evolution)57

can be indirectly prevented through the evolutionary adaptation of a predator population.58

Our focus here is more general. We seek to highlight that all instances of unsuccessful evolutionary59

rescue fundamentally constitute rate-induced tipping (no rate-induced ecological tipping points are nec-60

essary), and to derive a model from established assumptions of quantitative genetics that displays this as61

transparently as possible.62

2.1 Model specification63

We consider a single population of size n with a single evolving trait whose mean value is x. The popula-64

tion dynamics are given by65

dn

dt
= nr(n, x, t), (1)

where r is the population’s mean Malthusian fitness (i.e. growth rate). Following standard theory, the66

mean trait value x evolves according to hill-climbing on the fitness landscape described by r [Lande,67

1976]:68

dx

dt
= k

dr(n, x, t)

dx
H(n). (2)
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Here, k is the additive genetic variance; for our purposes, it describes the rate at which evolutionary69

adaptation can occur, and thus the timescale separation between ecological and evolutionary processes.70

Since an extinct species cannot evolve, we additionally use a step function H(n) to ensure that there can71

be no evolution when n is close to 0. We set H(n) to 1 for all n > ε (with 0 < ε � 1), and 0 otherwise;72

this avoids issues due to n = 0 only being approached in the limit t→∞.73

The detailed behavior of the system depends on the fitness function r. We assume that it has a max-74

imum at some value x∗, which we will later vary in time to mimic the effects of environmental change.75

Following, for example, Lande and Shannon [1996], it is reasonable to approximate the fitness maximum76

as quadratic and to include density-dependent effects through an additive term f(n):77

r(n, x, t) = r∗ − a(x− x∗)2 + f(n), (3)

where r∗ sets the maximum growth rate and a determines how fast fitness declines with distance from x∗.78

This immediately yields79

dx

dt
= −2ka(x− x∗)H(n), (4)

i.e. x decays exponentially towards the optimum value x∗, unless the population is extinct (n = 0).80

The density dependence f(n) needs to obey two real-world constraints. First, it needs to become81

negative for large enough n; otherwise, the population could grow indefinitely as long as x permitted it.82

In other words, f(n) needs to provide an effective carrying capacity: i.e. a stable equilibrium at high n.83

Second, real populations typically exhibit minimum viable population sizes, and indeed these are required84

for there to be well-defined extinction “events”. This suggests the incorporation of a strong Allee effect: an85

unstable equilibrium at low n, below which the population collapses (see Stephens and Sutherland [1999]86

for a review and further discussion). The inclusion of a minimal viable population size is also consistent87

with previous work on evolutionary rescue [Gomulkiewicz and Holt, 1995].88

For ease of analysis, we parametrize all of these effects using the simple quadratic form89

f(n) = −b+ cn− n2. (5)

Here, b, c > 0, and f(n) also needs to be negative to avoid effective growth rates larger than r∗. This90
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finally yields the population dynamics equation91

dn

dt
= n(r∗ − a(x− x∗)2 − b+ cn− n2). (6)

We use the following parameter values: r∗ = 1, a = 1, b = 2, c = 3, x∗ = 5, k = 0.001, ε = 10−5.92

We make the standard assumption that evolutionary processes occur on a much slower timescale than93

ecological processes [Roughgarden, 1983, Dieckmann and Law, 1996]. All units, including those of our94

population n and trait x, are arbitrary. As long as our parameter choices indeed lead to the above timescale95

separation, our qualitative results will be largely independent of the specific values.96

2.2 Initial analysis97

First, it is instructive to estimate the ecological and evolutionary timescales. From (4), we have an evo-98

lutionary timescale τev ' 1/(2ka), i.e. 500 for our default parameter values. Estimating the ecological99

timescale is more challenging, but one simple option is to define it as the timescale on which the population100

goes extinct if x = x∗ and n is small. From 6, we have101

dn

dt
= n(r∗ − b), (7)

and so n collapses with a characteristic timescale of τec = 1/(b− r∗), which is 1 for our default parameter102

values. We see that ecological and evolutionary timescales are indeed separated by multiple orders of103

magnitude.104

This is an example of a slow-fast dynamical system: the population n adjusts on the faster ecological105

timescale, while the trait value x adjusts on the slower evolutionary timescale. The dynamics of the system106

can therefore be well understood by considering the nullclines (where dx/dt and dn/dt equal zero). These107

are straightforward to solve for explicitly. From (4), dx/dt = 0 either when x = x∗ or n < ε. From (6),108

dn/dt = 0 when n = 0 or when109

n2 − cn+ (b− r∗ + a(x− x∗)2) = 0, (8)
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i.e.110

x = x∗ ±
√

1

a
(−n2 + cn− b+ r∗). (9)

These nullclines are plotted in Figure 1. Equilibrium states, or fixed points, occur when they intersect:111

there is one stable fixed point at x = x∗ and high n, an unstable saddle point at x = x∗ and low n, and112

a line of stable fixed points at n = 0. Because n is driven by the much faster ecological processes, the113

population rapidly adjusts towards a dn/dt = 0 nullcline. This either means reaching the line of fixed114

points at n = 0 (in which case the population goes extinct) or the dn/dt = 0 curve at nonzero n, in115

which case evolutionary adaptation slowly brings the system towards the stable fixed point. The slow116

dynamics of the system take place very close to these curves. Formally, the dn/dt nullcline defines a117

“critical manifold” on which all dynamics take place in the limit k = 0, and for small enough k > 0 the118

dynamics mostly take place on a very nearby “slow manifold” [Szmolyan and Wechselberger, 2001]. To119

emphasize their real-world meaning, we refer to the different parts of the dn/dt = 0 nullcline separately120

as the extinct and extant critical manifolds, respectively.121

0 1 2 3
n (population, fast variable)

3

4

5

6

7

x
(t

ra
it

,
sl

ow
va

ri
ab

le
)

dn

dt
= 0

dx

dt
= 0

Figure 1: Dynamics of the model (note units of x and n are arbitrary). The black dot
and black line at n = 0 denote stable fixed points (equilibria), while the white dot
denotes an unstable saddle point. The timescale separation means that the system
equilibrates rapidly towards the dn/dt = 0 nullcline (shown by black arrows), and
only then adjusts slowly towards the stable fixed point (if the population is not
already extinct).
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2.3 Evolutionary rescue and rate-induced extinction122

Perturbations to the system can lead to extinction; Figure 2 shows how. Consider a scenario in which the123

population was initially at the stable high-n equilibrium, with the trait x at its optimum value x∗, and x∗124

is then instantaneously increased. Driven by the ecological dynamics, the population size n will rapidly125

adjust towards dn/dt = 0. However, there are two possible outcomes. If x is not too far from x∗, the126

system will come close to the extant critical manifold and survive long-term — because adaptation saves127

the population from extinction, this is precisely evolutionary rescue. If x is far enough from x∗, it passes128

below the local minimum (fold) of the extant critical manifold and becomes extinct. Separating these two129

cases is a set of trajectories that stay close to the unstable branch of the extant critical manifold, referred to130

as ‘canards’ [Benoı̂t et al., 1981, Wieczorek et al., 2010]; they define the (quasi) threshold beyond which131

a perturbation will lead to extinction.132
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Figure 2: Perturbations to the system can lead to extinction. We assume that the
system was initially at the stable high-n equilibrium, and the optimal trait x∗ is
instantaneously increased. The system will then rapidly adjust towards the neigh-
borhood of dn/dt = 0 (the critical manifold). If x is not too far from x∗ (green
trajectory), the system comes close to the extant critical manifold (gray), and evo-
lutionary rescue occurs: the system recovers back to the high-n stable state. If x
is far enough from x∗, the trajectory passes below the local minimum (fold) in the
extant critical manifold, and extinction occurs instead. Separating these two cases
is a set of ‘canard trajectories’ that stay close to the unstable branch of the extant
critical manifold, towards the low-n saddle point in Figure 1; these can go either
towards extinction or recovery, as shown.

It is worth noting that the high-n equilibrium does not need to lose its stability for extinction to occur:133

in other words, the collapse is not a consequence of a bifurcation. This distinction is significant because134

tipping points have long been primarily associated with bifurcations (e.g. Scheffer et al. [2001]), and be-135

cause bifurcations imply that tipping occurs when forcings exceed fixed thresholds. Rather, this collapse is136

an instance of rate-induced tipping [Wieczorek et al., 2010, Ashwin et al., 2012], where a transition occurs137

when the system is forced beyond a critical rate of change. The dynamical mechanism of a threshold set138

of canard trajectories (as demonstrated in Figure 2) is exactly that given by Wieczorek et al. [2010]; the139

generality of our model suggests that this pathway to rate-induced tipping may be widely applicable across140

evolutionary systems.141

The exquisite sensitivity to the rate of change of the forcing is further demonstrated in Figure 3. Here,142
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we ramp the optimal trait value x∗ linearly (i.e. dx∗/dt = const.) from 5 to 8 over two slightly different143

timescales: 1200 and 1000 timesteps, respectively. In the slower case, the population is able to recover and144

evolutionary rescue occurs. In the faster case, the population is driven to extinction. Following previous145

work (e.g. Wieczorek et al. [2010], Ashwin et al. [2012], Arnscheidt and Rothman [2020]), it is instructive146

to consider the trajectories in the three-dimensional space of the two variables (n, x) and the time-varying147

forcing parameter (x∗). Now, the extant critical manifold becomes a three-dimensional surface; we reverse148

the x-axis to visualize the fold more clearly. For both the slower and faster perturbations the trajectories149

initially stay close to the extant critical manifold. However, when perturbed more quickly the system150

crosses the fold, and rapidly heads towards extinction.151
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Figure 3: Evolutionary rescue and rate-induced extinction. We change the opti-
mal trait x∗ linearly over two slightly different time periods. When we do it more
slowly, the system is able to recover (evolutionary rescue, A). When the system is
perturbed more quickly, the system collapses (rate-induced extinction, B). We also
visualize this in the space of n, x, x∗: here, the extant critical manifold becomes a
surface (black line=fixed point), and the distinction between extinction and recov-
ery is given approximately by whether or not the system passes the fold (dashed
black line) in the extant critical manifold.
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The connection between evolutionary rescue and rate-induced tipping is now clear. Evolutionary res-152

cue and rate-induced tipping towards extinction essentially span the space of possible outcomes when the153

optimal trait x∗ is perturbed (at least in this model). Unsuccessful evolutionary rescue is precisely rate-154

induced tipping towards extinction, and vice versa. While in special cases rate-induced tipping towards155

extinction can also be exhibited purely due to ecological dynamics [Vanselow et al., 2019], here we use156

“rate-induced extinction” to refer specifically to the scenario in which the relevant damping force (i.e. the157

mechanism combating the deleterious effects of perturbations) is evolutionary adaptation. Since evolu-158

tionary adaptation is ubiquituous across real-world systems, it seems that rate-induced extinction should159

also be common; the rest of the paper is devoted to addressing this.160

Before we move on, it is finally worth assessing how the critical rate of change to induce extinction in161

the model changes with the timescale, τ ; this is shown in Figure 4. We calculate this rate numerically by162

repeatedly initializing the system at the high-n equilibrium, linearly ramping the optimum trait value x∗ to163

a new value across a time interval τ , and waiting to see whether extinction occurs. The vertical axis (rate164

of change of forcing) describes how quickly x∗ changes; the ecological timescale τec and the evolutionary165

timescale τev obtained above are also shown. We find that the critical rate scales approximately as τ−1 until166

τev and is constant at longer timescales. This can be understood as follows: only evolutionary adaptation167

can damp the negative outcomes of changing x∗, and so on timescales too short for it to play a role there168

is an effective “critical amount” of change to induce extinction. Similar logic has been considered in the169

context of past mass extinctions [Rothman, 2017, 2019, Arnscheidt and Rothman, 2022]; if indeed valid170

in this context, one significance of the scaling relationship is that it could allow a rigorous comparison of171

the fast anthropogenic Earth system perturbation to the slow perturbations of the deep past.172

11



100 101 102 103 104 105

Timescale

10−3

10−2

10−1

R
at

e
of

ch
an

ge
of

fo
rc

in
g

extinction

survival

∝ τ−1

' τec ' τev

Figure 4: The scaling of the critical rate with time, in the minimal differential-
equation model. It scales with τ−1 below the evolutionary timescale τev, and is
constant on longer timescales. Far enough below evolutionary timescales, adapta-
tion is negligible, and so there is an effective critical amount of change in x∗ for
which extinction occurs.

3 Rate-induced extinction in a model of individual interacting agents173

The minimal model is an extremely simplified version of reality, and thus has a number of weaknesses.174

First, the population dynamics and evolutionary dynamics are described macroscopically by single vari-175

ables (n and x), making no attempt to represent heterogeneous individual agents. Second, evolutionary176

hill-climbing is written in explicitly (4), assuming that evolution will always act to increase population177

mean fitness. This is not necessarily true in nature: the phenomenon of “evolutionary suicide”, in which178

rare mutants drive an entire population to extinction, is an extreme counterexample [Matsuda and Abrams,179

1994, Parvinen, 2005]. Third, the model assumes that environmental change is entirely external, while180

real-world dynamics are coevolutionary: organisms also modify their environment as they evolve (e.g.181

Dieckmann and Law [1996]). Finally, the model is purely deterministic, while the real world contains182

unavoidable elements of randomness. It is not obvious that rate-induced extinction, especially with a well-183

defined threshold as shown above, would still occur when all of these factors are considered; the purpose184
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of this section is to show that it still can.185

3.1 Model specification186

We consider a simple many-agent model of an evolving population based on that of Ferriere and Legendre187

[2013], which is itself a reduction of the model of Ferriere et al. [2002]. The primary goal here is not188

realism but rather to obtain a model that is as computationally simple as possible (allowing for many189

repeated simulations and robust Monte Carlo statistics) while still improving on the minimal model’s190

weaknesses as noted above. Ferriere and Legendre [2013] demonstrate evolutionary rescue in their model191

by perturbing the system and alternately turning evolution on and off; here, we extend this to rate-induced192

extinction by explicitly perturbing the system at different rates, and characterizing the threshold at which193

extinction occurs.194

The model consists of N interacting agents, each of which has a trait xi that reflects its investment in195

some public good that benefits the whole population. At each discrete timestep, each agent dies with some196

probability pdeath and gives birth with some probability pbirth. The probability of death is197

pdeath = βxi(xi + 1) + γN, (10)

where β and γ are constants. The first term reflects the cost to each agent of investing in the public198

goods, and the second term reflects a carrying capacity-type constraint. Here, and similarly for pbirth, the199

probability is simply set equal to 0 or 1 if the expression returns a value beyond one of those limits.200

At each timestep, the ith agent also has a probability of (asexually) reproducing, determined by the201

expression202

pbirth =
κ
∑

j xj

1 +
∑

k(α(xi − xk) + θxk)
. (11)

κ and θ are constants, while α is a function that introduces asymmetric competition [Ferriere et al., 2002,203

Ferriere and Legendre, 2013]: it is defined as204

α(z) = 2h

(
1− 1

1 + e−w(z+a)

)
, (12)

where h,w, and a are also constants. The net effect of this function is that agents who invest more in205
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the public goods are better able to compete for those goods; this may be necessary for the persistence of206

mutually beneficial interactions [Ferriere et al., 2002]. It is worth noting that the public goods create an207

Allee effect [Ferriere and Legendre, 2013], similar to the assumption made in the minimal model.208

Finally, whenever a new agent is born, there is a chance pmut that it mutates its type. If a mutation209

occurs, the new type xchild is randomly chosen from the set {xparent+1, xparent−1}, with equal probability.210

We implement the model using the Julia language [Bezanson et al., 2017]. Default parameter values,211

largely following Ferriere and Legendre [2013], are β = 10−5, γ = 5 × 10−5, κ = 0.01, θ = 0.01, h =212

2.05, w = 0.4, a = −9.16, pmut = 0.001.213

3.2 Initial analysis214

A simple demonstration of the model, with constant default parameter values, is shown in Figure 5. The215

model is seeded with 1000 agents at time t = 0. All agents have xi = 100. Over evolutionary time216

intervals (tens of thousands of time steps), we observe evolutionary branching [Geritz et al., 1997], leading217

to the diversification of the population into different “clusters” in trait space. While we are agnostic as218

to which degree these different branches could represent different “species”, we argue that the branches219

can be appropriately described as “co-evolving”. We eventually reach a point at which the degree of220

branching does not increase much more, and refer to this as a ”quasi-evolutionary stable strategy” (qESS)221

[Maynard Smith and Price, 1973, Christensen et al., 2002]. Further tests indicate that this qESS survives222

at least until 5 million timesteps.223
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Figure 5: Demonstration of the basic features of the many-agent model. For every
type x that exists at time t, a point is plotted; its color shows how many individuals
of that type currently exist. The model is seeded with 1000 agents with x = 100 at
time t = 0, and over evolutionary time intervals (tens of thousands of time steps),
evolutionary branching occurs. We eventually reach a quasi-evolutionary stable
strategy (qESS).

It is again instructive to estimate the ecological and evolutionary timescales. The ecological timescale224

τec can be straightforwardly estimated using the carrying capacity term in Eq. (10). In the slowest case225

(with no investment in public goods), and with no births, the number of agents would reduce by a factor226

of γN each timestep. Using an order-of-magnitude estimate of 1000 agents, and our default parameter227

settings, we obtain a characteristic timescale of τec ' 1/γN = 20.228

The evolutionary timescale τev can be estimated by asking: how long do we have to wait for N mu-229

tations to occur? The expected number of mutations per timestep is Npbirthpmut, hence the time period230

for N mutations is approximately (pbirthpmut)
−1. For population numbers to stay approximately con-231

stant, pbirth ' pdeath. Then, if we use pbirth ' γN as above for our default parameter settings we have232

τev ' 20000. We note that, although these approximations are crude, the goal is only to understand the233

relationship between the ecological and evolutionary timescales, and for that purpose they are sufficient.234
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3.3 Rate-induced extinction235

The model indeed exhibits the possibility of rate-induced extinction; this is shown in Figure 6. We be-236

gin at the qESS, and then linearly ramp the parameter β (mortality cost of investing in public goods)237

across an identical parameter range but at different speeds. When this is done slowly, some branches238

of the community are able to persist. When it is done more quickly, the entire community goes extinct.239

This is rate-induced extinction, analogous to Figure 3. When the community persists, it does so due to240

evolutionary adaptation to the externally imposed changes - i.e. evolutionary rescue.241
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Figure 6: Rate-induced extinction and evolutionary rescue in the many-agent
model. In both cases the community is subjected to a linear ramp in the param-
eter β (mortality cost of investing in public goods). If this is done more slowly (A),
some branches can persist (evolutionary rescue). If it is done more quickly (B), the
entire community goes extinct (rate-induced extinction).

We again characterize the critical rate as a function of timescale. However, since the model is inher-242

ently stochastic, we don’t search for discrete thresholds such as in Figure 4. Instead, we conduct many243

simulations where we modify the parameter β at a range of rates across a range of timescales, and obtain244
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Monte Carlo estimates of the probability for extinction for each perturbation. The results are shown in245

Figure 7. A robust quasi-discrete boundary emerges. Below τev, we recover the τ−1 scaling observed pre-246

viously. Above τev we see a flattening slope indicating a constant critical rate, but there is also no longer247

such a clear boundary between low and high probabilities of extinction.248
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Figure 7: Critical rate of change for extinction for the many-agent model. The
probability of extinction is estimated throughout rate-timescale space, using results
from around 20000 simulations. Below the evolutionary timescale τev, we recover
the now familiar τ−1 scaling, with a discrete boundary. Above τev we see a flatten-
ing slope indicating a constant critical rate, but there is also no longer such a clear
boundary between low and high probabilities of extinction. Compare to Figure 4.

These results are broadly consistent with those from the minimal model: rate-induced extinction is249

possible, is indeed a counterpart to evolutionary rescue, and there is a remarkably well-defined (though250

partially probabilistic) threshold beyond which it is initiated. This shows that the key properties of real-251

world evolutionary systems listed at the start of this section (heterogeneous individual agents, emergent252

evolutionary dynamics, coevolution, randomness) do not invalidate the conclusions from the minimal253

model, at least in principle.254
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4 Discussion: rate-induced collapse in any evolutionary system?255

Our results are likely widely applicable in the context of individual species or simple evolving commu-256

nities. The minimal model is derived from very general assumptions (e.g. a moving quadratic fitness257

maximum), and is a plausible approximation for evolutionary-ecological dynamics of single species in a258

range of contexts. For such systems, there is clearly a class of environmental perturbations where the only259

two outcomes are evolutionary rescue or rate-induced extinction. Of course this is not all-encompassing:260

for example, a species can become extinct because its niche disappears and no capacity for rapid evolu-261

tion could have saved it [Maynard Smith, 1989]. In the language of tipping points, this corresponds to262

fixed-threshold tipping towards extinction — which is most often due to bifurcations. Nevertheless, as263

long as evolutionary rescue is possible (and there is mounting evidence that it often is, as discussed in the264

introduction), rate-induced extinction is its counterpart.265

We note that both models considered here contain Allee effects: for populations that are small enough,266

per-capita growth rate increases with population size. In the minimal model this is written in explicitly,267

while in the more complex model it emerges from the presence of public goods [Ferriere and Legendre,268

2013]. Allee effects are likely ubiquitous in nature, because they are a fundamental consequence of co-269

operative interactions between organisms [Lidicker, 2010]. Nevertheless, it also seems that rate-induced270

extinction should still occur in the minimal model if the Allee effect were removed, because one can al-271

ways force a negative growth rate by moving x∗ far enough from x (Eq. 6). The role of Allee effects in272

rate-induced extinction is worth investigating in future work.273

How far can we extend the ideas in this paper to more complex evolutionary systems? Throughout this274

work we have purposely referred to “evolutionary systems” more generally: we consider this category as275

including all systems with some element of evolution by natural selection. The fundamental mechanism at276

play in rate-induced extinction and evolutionary rescue is the competition between an external perturbation277

and the ability for evolutionary adaptation to follow a moving fitness maximum; hence, the question is to278

which extent evolution can be considered to behave in this way for systems more complex than individual279

species. This intersects with the complex debate about selection and inheritance on a larger scale than280

the individual [Damuth and Heisler, 1988, Odling-Smee et al., 1996, Okasha, 2001, Hastings et al., 2007,281

Danchin et al., 2011, Doolittle and Inkpen, 2018, Lenton et al., 2021], which we will not wade into here.282
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One way to sidestep it may simply be to consider emergent large-scale feedbacks in ecosystems and the283

biosphere within the framework of “complex adaptive systems” [Levin, 1998]; then, when such feedbacks284

are stabilizing, they may play a role similar to evolutionary adaptation in the models studied in this paper.285

In any case, the many-agent model serves as an initial demonstration of rate-induced extinction in more286

complex evolutionary systems, but there is much more work to be done.287

There are real-world examples of phenomena analogous to rate-induced extinction and evolutionary288

rescue in more complex systems. For example, in the evolutionary rescue literature, there is evidence289

that entire communities of microbes can undergo “community rescue” [Low-Décarie et al., 2015]. On the290

vastly larger scale of the global biosphere, there is empirical evidence for a critical rate of environmental291

change to induce mass extinction [Rothman, 2017, 2019, Arnscheidt and Rothman, 2022]. Note that in292

mass extinctions, unlike the models considered above, a large abrupt nonlinear destructive transition occurs293

but does not have to lead to the complete destruction of the system — we refer to this more generally as a294

“collapse”.295

Finally, one can make an argument for the general existence of rate-induced collapse thresholds in296

complex evolutionary systems through the following thought experiment. Consider the response of Earth’s297

biosphere to two global warming events of the same magnitude but occurring on very different timescales:298

a fast one and a slow one. Further assume that the amount of warming is large enough to induce mass299

extinction on the fast timescale (as suggested for, e.g. the end-Permian extinction, by Joachimski et al.300

[2012]), but not enough to make the Earth permanently uninhabitable. Now, if we consider the same degree301

of warming over a slow timescale, it seems intuitive that we can make the timescale slow enough for no302

such extinction to occur. This does not necessarily mean that there is a sharp threshold for rate-induced303

collapse as in, e.g., Figure 7, or that every kind of perturbation will eventually lead to rate-induced collapse304

(as opposed to fixed-threshold collapse) but it does suggest that the general phenomenon is important.305

Interestingly, this kind of logic suggests that rate-induced collapse may also be widely relevant for306

human societies and human civilization as a whole. While there exists debate about the most relevant307

processes of evolutionary selection and inheritance in human systems [Dawkins, 1976, Ehrlich and Levin,308

2005, Danchin et al., 2011, Ellis, 2015], evolution certainly plays a key role. Indeed, human civilization,309

especially when considered in tandem with its environment, is also a complex adaptive system [Levin310

et al., 2013]. Paralleling the thought experiment above, one can easily envision a perturbation (such as a311
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certain degree of global warming) that could lead to civilizational collapse if it occurred across 2 years but312

not if it occurred gradually across 200. Further research into such collapse thresholds may be of substantial313

societal importance.314

5 Conclusion315

In this work, we have attempted to bring together a number of threads from different fields. Evolutionary316

rescue is a well-recognized phenomenon in which a population can avoid extinction due to evolutionary317

adaptation. Using a simple model, we have demonstrated the fundamental connection between evolu-318

tionary rescue and “rate-induced tipping”. The threshold for rate-induced extinction is well-defined, and319

obeys a scaling law discussed in previous work on the initiation of mass extinctions. The same is true320

in a more complex many-agent model in which the large-scale dynamics arise from the interactions of321

heterogeneous individual agents. We suggest that a vast range of evolutionary systems should in principle322

be susceptible to rate-induced collapse, including ecosystems on all scales as well as human societies, and323

that this is a fascinating and timely direction for future research.324
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